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The mathematical model required for MC&G (mapping, charting and geodesy)
applications by USGS must be capable of determining the pixel coordinates (C,,C,) on
the sinusoidal projection of a point on the venusian surface whose body fixed, VBF-85
coordinates (X,Y,Z) are given.
The key assumption upon which the formulation is based is that the (C,,C,) pixel
coordinates of an imaged point may be associated with a single burst whose number is
contained in the data annotation label (SDPS 101, Rev. 2, pp. 3-16), and that the
eguations and parameters associated with the burst (SDPS 101, Rev. 2, pp. F-56-57) may
be used to compute the unambiguous range and doppler frequency at the burst reference
time.
The projection of surface coordinates to pixel coordinates takes place in three primary
steps:

* determine the burst number,

 compute the range and doppler frequency, and

» convert the range and doppler to sinusoidal coordinates.
Each of these steps is broken into smaller steps and presented in the following
paragraphs. An error model is outlined in the last paragraph. The notation used attempts
to follow that of SDPS 101.
All units are in the mks system and angles are expressed in radians unless otherwise
noted.

A Determination of Burst Number

The burst number is required in order to access the correct set of SDPS processing
parameters. These parameters include the spacecraft position and velocity vectors and
the range and azimuth resampling coefficients required to convert range and doppler into
the sinusoidal projection.

In regard to the triangulation mathematical model, the (C,,C,) measured coordinates are
given. From these the burst number is determined. The computation is presented in the
following paragraph.

A.1lDetermination of Burst Number from C,-C,

Each logical image data record in FILE 15 (multi-look image data in sinusoidal
projection) contains the C,-C, coordinates of the center of the first pixel in aline and the
number of lines (nl) and the number of pixels per line (np) along with the burst counter in
the data annotation label. Therefore, each record has a maximum and minimum C, and
C, coordinate given by

C,(max) = reference point offset in lines*
C,(min) = reference point offset in pixels*

C,(min) = C,(max) —nl
C,(max) = C,(min) +np

The burst number (b) isfound in the record which satisfies the condition
C,(min) < C, < C,(max)

C,(min) £ C, < C,(max).
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* from data annotation label in record.

B Computation of Range & Doppler Frequency

The apparent range is determined in two steps, which are:

B.1 computation of the geometric slant range, and

B.2 determination of the apparent range by applying the refraction correction
The apparent doppler frequency is computed in three steps:

B.3 geometric inertial range rate,

B.4 apparent range rate, and

B.5 computation of doppler frequency

B.1 Computation of the Geometric Slant Range
Having determined the burst number (b), the spacecraft position vector X(t,) and velocity
vector V(t,) in VBF-85 coordinates are extracted from the SDPS processing parameters
for burst b from FILE 16.
The vector coordinates are defined by

(XS’YS1 ZS) = Xs(tb)

(XS’YS’ Zs) = vs(tb)
And the geometric slant range is given by

R, = \/(Xs - X)? +(Ys -Y)? +(Zs A

B.2 Computation of Apparent Range

The apparent range is determined by applying arefraction correction to the geometric
dant range. The project specified atmosphere contains 86 layers extending from the
planet surface — 10 km to an atitude of 76 km. The index of refraction is given for each
layer. The equations given in SDPS 101 trace the ray path from the radar to the planet
surface. A math model for USGS MC& G requires aray trace when both the locations of
the surface point and spacecraft are given.

The geometric slant range will be corrected resulting in the apparent range (R,).

A rational polynomial function will be developed which gives the refraction correction as
afunction of the surface point elevation (h), the satellite altitude (H), and the geometric
slant range R,.

Figure B.2—1 depicts the venusian atmosphere reaching from the surface— 10 kmto a
height of 76 km. The atmosphere is divided into 87 shells (the first shell being free
space). Theindex of refraction for shell k is represented by n,.

Figure B.2—2 depicts the path of aradar pulse through the atmosphere. Oneis given the
nadir distance of the satellite (®,), the height of the satellite (H), and the height of the
surface point (h).

The algorithm for finding the slant range correction is as follows:

1. determine the slant range to the top of the atmosphere using the law of cosines
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R’ = 1(-B —+/B* —4C), where
B =-2(6051+ H)cosO,
C =(6051+ H)* -(6127)*
2. determine the angle of incidence at the top of the atmosphere and the angle subtended
at Venus's center
I, =sin"(*55sinG,)
V1 =8N (g7 SN©,)
3. thepath is now traced through the atmosphere to the shell having the elevation (h)
where hisinintegral km.

SetR =Randy =y,
FORk=1,2,...,(76 —h)
R, = 6128 -k
Rn=R -1
O =SiN (N SNl /Ny,s)
| ., =SSN (R sSiNO,,,/R.,)
Vier =1 ki1 ~Oxa
d|<+1 = R<+1Sinyk+1/Sinek+l
Ra = & +nk+1dk+l
Y=V* Vn
4. compute the slant range corresponding to ©,, h, and H.
R, = /(6051 +h)? +(6051 +H)? —2(6051 +h)(6051 +H)cosy
5. determine the slant range correction
R=R -R
The algorithm outlined above is used to generate a large set of values (R, H, h, dR);, j=1,

2, ..., n over the entire working range of ©,, h, and H. The values are then fit using a
rational polynomia R

R =R(R ,H;.h)
The function R has the form
_3+G'A
1+G'B
in which
G’ :<F§,H,h,I1H,I1h,Hh,...>
A=(a,a,...a,)
B=(b,b,,....b,)"

The coefficients a,, b, are solved for.
Having once determined the function R and the coefficients a,, b, one can then correct
the geometric slant range computed in paragraph B.1 for refraction:
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&R, =R(R,,H,h)

where
H=X>+Y?+Z> -6051
h= ,\;“xz +Y? +72 —6051.

B.3 Computation of Geometric Inertial Range Rate

The geometric inertial range rate is required for the computation of the doppler
frequency. Thisrange rate describes the relative motion of the satellite and surface point,
both of which are moving in inertial space.
Consider (Xg,Ys,Zs) and (X,Y,Z) to be the instantaneous inertial coordinates of the
spacecraft and surface point respectively, then the range rate is given by

R =& [(Xs = X)(Xg = X)) +(Ys =Y)(Yg -Y)) +(Zs -2)(Zg —Z)].
The inertial velocities of the spacecraft and surface point are given by

B.4 Computation of the Apparent Range Rate

The path that is changing and which affects the doppler frequency is the apparent path.
The apparent range is given by

R =R+,
where 0R, is the refraction correction which is afunction of R;. One may write

> ~OR _dR dR,

R dt dR, dt

L _0 dR D
=g ngE'%

Since JR; isrepresented by arational polynomial, the derivative is easily taken.

B.5 Computation of the Doppler Frequency
The frequency observed at the surface point is given by
f=1,+IR
Wheref, and A are the transmitted frequency and wavelength respectively. The
frequency observed back at the satelliteis

f=f+iR
Therefore .
fs = fO +% F{d

The doppler frequency is given by
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fd = fO_fs
4R

Note added 3/01: It is of course critical to use the exact radar wavelength in this
calculation. We recently discovered that the code as originally written used the nominal
wavelength of 12.5 cm. Substitution of the exact value ¢/2.3850 GHz = 12.569914 cm
reduced discrepancies between computed doppler coordinates and those stored in the F-
BIDRs, and eliminated problems with cursor jumping and artifacts in automatic
stereomatching that initially affected the sensor model in the SOCET SET environment.

C. Conversion of Range and Doppler to Sinusoidal C,-C,
Coordinates
The equations of Appendix Jof SDPS 101 will be used to convert (R,,f,) to (C,,C,) pixel

coordinates. These equations utilize the SDPS processing parameters for burst b. In
these equations R=R, and f=f,.

D. Error Model

The preliminary error model will consist smply of adjusting the spacecraft ephemeris for
an orbital pass. Thisisin addition to adjusting the surface point coordinates and
minimizing the quadratic form of the C,-C, residuals.

Corrections to the spacecraft ephemeris will be in terms of a single set of in-track, cross-
track and radial errors (Al,AC,AR).

Corrections to the instantaneous inertial (VBF-85) position coordinates at every burst are

given by
[Axm 0, ETDAl
AvH= B facH

Tz @0 o
inwhich Q,, U, and U are the unit vectors along the in-track, cross-track, and radial

axes.
Vectors aong the axes are given by

u :<XS,YS,Z>
o =(Xq. Ve, Zg)
GC=G XVgq
U, =U; XUk
The unit vectors are therefore given by
a,=u,/|u, |
Ue =0/ |0 |
O =Ug/|Ug].
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Magellan Mathematical Model Partial Derivatives

Differential Derivation
Let:
u=f-f_(022)
u, =C, -C,(2,2)
U =G _C19(212)

U,=(1u,u)
U, = <1' UZ’U§>
U, = <1. u3’u§>
The two condition equations of Appendix Jare:
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00 O 00 O

df =08E1 EdCl+09E1 EdCz
F2uH 2,
00O

- 0. O
U, =Ug01 O

%ifpu,H

108
u,=U,01 0

Thu,b

df = u,,dC, +u,,dC,
Now substituting df
dR = u,df +u,dC,

dR = Ug (,dC; +u,dC,) +u,dC,
0R = U,0C, + (Uyth, +U,)dC,
Ui, = Uglhg
Uz = Uty +U,
dR=u,,dC, +u,,dC,

now

(RO ;U (T0G,

of O H‘lo U'n%czﬂ

mC, 0 1 Ou;  —Us(MHRD
Egczg_ U,y — Uglg H-um U, %f %
014 - 1 Ouy, U]

2 Uy — Ul Uy Uy

dR=dR, +daR
df =-2dR

._D+@D. i RO
TR HY TR
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output from the refraction function.
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Magellan Mathematical Model Algorithm

Input
(¢,A,h) Latitude, longitude, and height of surface point.
(X Ys, Zs, X, Y, Zs) VBF-85 spacecraft position/velocity.
R, mean radius of Venus.

@ rotational rate of Venus.
(Alg,AC,,AR) corrections to spacecraft position.

Hg-ij» Haij» f4-4(2,2), R,(2,2)00 _
[ processing parameters
C2g (21 2)'Clg (2, 2) |:|

A radar wavelength.
S, =-1for sinusoidal projection, +1 for oblique sinusoidal projection.

Output
(C.,C,) image coordinates
9C.C) O

= OBl AC, A
sa OBl ACs RS)% partial derivatives

5 = 9G.C) [
s 0(¢,A,h) H

All units are meters, kg, seconds, radians.

Projective Equations Algorithm

1. VBF-85 coordinates of the surface point
X = (R, +h)cos¢ cosA
Y =(R, +h)cosgsinA

Z=(R, +h)sing
2. Unit vectors in the spacecraft in-track, cross-track, and radial system
Xq = Xg — Y,
Yy =Yg + X
Zg = Z
Up = (Xs) Yo, Zs)
Vg =(Xs.Ye. Zg)
0, =0, xV,
0, =0, x0,

14



SAIC Magellan Mathematical Model
G = U/ \0 |
/04

3. Corrected VBF-85 spacecraft coordinates
XS0 X - 0, d Al
EV) = b, D+ He [AC

E’ZSD SD Hli EBARSH

—
3x1 3

4. Geometric slant range

R, =(X$ = X)* (Y -Y)* +(Z$ -2)°

5. Refraction correction (functions provided in appendix)
Let B
U2=(X Y5, Z2)

P=(XY,2)
Then o
oR=R(R,,U,P)
doR
— =R’ U P
aR) (R, Us,P)
6. Apparent slant range
R=R,+dR
7.Geometric inertial range rate
X, = —Y
Y, = X
D( - X B
R, = &((Xg = X),(Ys = Y).(Z3 Z)>DY -Y 0O
1x3 DZS —Z D
%/_/

3x1

8.Apparent range rate

R= (1+ng;)RJ

15
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9.Doppler frequency

f=-2R

10. C, and C, coordinates

Define:

Partial Derivatives Algorithm

=[#s-4

-B -SB -4AC,

2A

ul = f - fd—g(212)
u =G, —Cy(2.2)

-C,(22), §=1

-C,(22), §=1

16
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Appendix: Refraction

The refraction is represented by arational polynomial expression whose coefficients are
determined by fitting the refraction corrections for various geometric configurations
representing the collection geometry.
Theinput its:

(X3,Y2,Z2) the corrected spacecraft coordinates

(X,Y,Z) the surface point coordinates

R, the mean radius of Venus
The output is:

IR the refraction correction to slant range

ddR/dR, therate of change of R with respect to slant range R,

_9(RdR/dR) O
2 I(X)Y,Z)

2x3

Epartial derivatives
_ IR AR/AR)

~  axL¥.z29) H

2x3

@
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